
Solving The Platform Entropy Problem

George Cox

Security Architect

Intel Corporation

Session Introduction

Much of computer security is based upon the use of cryptography.

Cryptography is based upon two things:

• Good algorithms (e.g., AES) and

• Good keys (e.g., good random numbers).

Historically, computing platforms broadly have not had high quality/high
performance entropy (or random numbers).

By enabling ALL future Intel platforms with our RdRand instruction (supported
by our underlying Digital Random Number Generator (DRNG)), we:

Provide a fundamental solution to the long standing “Platform Entropy Problem”
and

Give Intel’s customers the “common brand promise” of high quality/high
performance entropy (or random numbers) everywhere across ALL Intel
products in which it is embedded.

=> the “Platform Entropy Problem” just “goes away” on future Intel-based
platforms.

Agenda

The Platform’s Need For Entropy

The Platform Entropy Problem

Examples of RNG-based Security Attacks

Serendipity Happens

Our Solution

SW Interface – The RdRand Instruction

The DRNG

RdRand/DRNG Deployment

Processor Embedding Example

Performance

Measured Throughput

Response Time and Reseeding Frequency

Summary

The Platform’s Need For Entropy

Entropy is valuable in a variety of uses, the first of which that comes
to mind being for “keying material” in cryptography.

Cryptography is a basic building block for modern computer security
and is based upon the use of comparably high quality algorithms
and keys.

Either being “weak” has resulted in successful attacks on cryptographic
systems.

Over time, cryptographic algorithms and their implementations have
continually been improved, as needed (e.g., our AES NI).

Comparably, the availability, quality, and performance of entropy
sources have not.

The Platform Entropy Problem

Historically, computing platforms have had a perennial problem of the
absence of any high quality/high performance “entropy source”.

Older approaches were almost all based upon the premise that true
“raw” entropy accumulation was a very slow process.

Entropy was slowly gathered in small quantities from sources of true
entropy (some HW source) at slow rates - in the bits/sec (e.g., key
strokes, mouse click timing, disk seek times) up to kilobits/sec
(analog ring oscillator-based TRNGs)

As a scarce resource, entropy had to be accumulated (in an entropy
pool) and used to seed/reseed a SW PRNG that could
cryptographically spread that scarce entropy resource out over
numerous requests with acceptable performance.

With little availability of quality entropy early in boot, OSes can have
difficulty generating good boot time keys.

5

The Platform Entropy Problem

OS mediated access to HW entropy sources reduces application or
networking performance further.

Many of these SW PRNGs did not met quality standards such as NIST
SP 800-90 or were not FIPS 140-2 certified as such.

Such SW PRNGs also have a history of being error prone and easily
monitorable/attackable.

As servers become headless (e.g., with no keyboard or mouse) and
move to SSDs (instead of disks), platform sources of entropy are
going away.

As one moves to virtualized environments, the virtualized OS that
thinks it can get at the platform’s HW entropy probably can’t and
will suffer further performance loss caused by hypervisor mediation.

6

Examples of RNG-based Security Attacks

Jan 1996 - Mozilla SSL Browser RNG Failure

28th September 1999 - How We Learned to
Cheat at Online Poker: A Study in Software
Security

• by Brad Arkin, Frank Hill, Scott Marks, Matt Schmid and Thomas
John Walls

August 2007 – NSA’s Dual EC DRBG shown to
have backdoor parameters

19th November 2007 – Microsoft Windows
Insecure Random Number Generator

• CVE-2007-6043

13th May 2008 - Debian/OpenSSL Fiasco

4th November 2008 - MiFare Classic

29th March 2010 - Weak RNG in PHP session ID
generation leads to session hijacking

December 2010 Sony Playstation 3 Jailbreak

Debian/OpenSSL Fiasco

Debian has warned of a vulnerability in its
cryptographic functions that could leave

systems open to attack.

The use of a cryptographically flawed pseudo
random number generator in Debian's
implementation of OpenSSL meant that

potentially predictable keys were generated…

The Register – May 13th, 2008

MiFare Classic Crypto-1

Stream cipher used in about 200 million RFID
chips worldwide. 16-bit random numbers

generated by LFSR-based RNG. Internal state
can be unshifted, filter function can be inverted,

limited size enables replay attacks.

BlackHat 2008

RNG-based Attacks Have Happened
More Often Than You Think

Serendipity Happens

The need for high quality entropy had been established/recognized,
but no acceptable solution was available – NO embedding of analog
TRNG in Intel processors

Then came a small, but crucial, invention

• Charles Dike and his digital Entropy Source (or TRNG)

• Which delivers “raw” entropy @ 2-3 gigabits/sec

Given that opportunity, we jumped in to add the necessary
downstream and wrapper functionality to support instruction level
use

8

9

data

data_valid/clock_out
DELAY

1-SHOT 1-SHOT

Stop

high

skew

large

cap

large

cap

heart_clock

node A node B

A cap B cap

Differential latch

Push into metastable state with resolution driven by thermal noise

Dynamic, bilateral, step-based feedback loop to deal with any circuit bias

Designed to be stable across process, temperature, and voltage/power variations

DRNG Entropy Source

Our Solution

Quite simply, we are in the process of making this long standing security
problem “just go away” by deploying a solution (code named Bull
Mountain) consisting of two parts:

• A RdRand instruction making entropy directly available to ALL SW on
Intel platforms in any operating state/mode and

• A HW Digital Random Number Generator (DRNG) producing NIST SP
800-90 compliant and FIPS 140-2 certifiable entropy that supplies
random numbers to the RdRand instruction.

New Common Brand Promise of Great Entropy on ALL Intel platforms!

SW Interface – The RdRand Instruction

Access to the DRNG is provided to SW through the new RdRand instruction

• Intel Advanced Vector Extensions Programming Reference, Chapter 8
(http://software.intel.com/en-us/avx/)) – pages 8-15 and 8-11;

The RdRand Software Implementation Guide (SIG) (http://software.intel.com/en-
us/articles/download-the-latest-bull-mountain-software-implementation-
guide/); and

RdRand retrieves a hardware generated random value from the DRNG and stores
it in the destination register given as an argument to the instruction.

RdRand is available to any system or application software running on the platform.
That is, there are no hardware ring requirements that restrict access based on
process privilege level. As such, RdRand may be invoked as part of an
operating system or hypervisor system library, a shared software library, or
directly by an application.

11

http://software.intel.com/en-us/avx/)
http://software.intel.com/en-us/avx/)
http://software.intel.com/en-us/avx/)
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/

The DRNG

A reusable IP module that provides each embedding with an autonomous/self contained, high quality/high
performance, “complete” DRNG

Provides “common brand promise” of high quality, high performance entropy across ALL Intel products

Composed of

– An all-digital Entropy Source (NRBG), runtime entropy quality measurement via Online Health Test (OHT),

– Conditioning (via AES CBC-MAC mode) and DRBGing (via AES CTR mode) post processing and

– Built In Self Test (BIST) and Test Port

“Standards” compliant (NIST SP 800-90) and FIPS 140-2/3 Level 2 certifiable as such and

Designed for ease of testability, debug, and validation in HVM and in end user platforms

– Comprehensive Built In Self Test (BIST) and

– Test Port (and associated tools) for full pre/post-silicon debug flexibility

Red dotted line is the DRNG’s FIPS boundary

13

Temporal Asynchrony Between Subunits

Our DRNG is logically a three stage/subunit asynchronous production pipeline
(composed of the Entropy Source, Online Health Test, and Conditioner and DRBG)

For “flow control” purposes, these subunits each have what amounts to an “output
queue” between them and their nearest neighbor in the DRNG production sequence

Depending on the subunit production rate and the next subunit consumption rate,
unpredictable dynamic synchronization behaviors ensue

ES OHT

O
S

T
E

 Q
u

e
u

e

O
S

T
E

 Q
u

e
u

e

S
h

ift re
g

C
o

n
d

itio
n

e
d

 E
n

tro
p

y

DRBG

C
o

n
d

itio
n

in
g

R
e

s
e

e
d

in
g

G
e

n
e

ra
tin

g

O
u

tp
u

t B
u

ffe
r

O
u

tp
u

t B
u

ffe
r

O
u

tp
u

t B
u

ffe
r

O
u

tp
u

t B
u

ffe
r

Thread #1

Generates

Raw entropy

Thread #2

Validates the entropy

and parallelizes it to

256 bits width

Thread #3

Switches between conditioning,

reseeding and generating, based

on queue state

Queue #1 Queue #2

Queue #3

Queue #4

RdRand/DRNG Deployment

RdRand/DRNG incorporation into Ivy Bridge processors and subsequent
reuse across ALL of Intel’s:

• Large core client (and server) processors

• Small core client (and server) processors (and associated SOCs);

• Client (and server) chipsets;

• Integrated graphics; and

• Throughput computing

summing to 31 product embeddings by EOY’2012

guarantees that we meet our “common brand promise” of consistently
delivering high quality/high performance entropy, where needed,
across ALL Intel products/platforms.

Ivy Bridge (large core client) is the first Intel product deployment of
RdRand/DRNG.

Processor Embedding Example

Test Port

Provides each processor
package with a chipset
independent, autonomous/self
contained, high quality/high
performance, “complete”,
shared, uncore resident DRNG

DRNG access by software via
RdRand instruction

In any given embedding, the
DRNG is shared by multiple
users (e.g.,

• Processor ucode (across
multiple threads/cores) to
implement RdRand;

• PCU;

• GEN/PAVP; and/or

• Programmable elements in
SOCs)

Processor Package

Core0

 External

Instruction

uCode

RdRand

Instruction

Internal

Function

uCode

RNG uCode Module

Core1

 External

Instruction

uCode

RdRand

Instruction

Internal

Function

uCode

RNG uCode Module

Combined Conditioner and

Deterministic Random Bit

Generator (DRBG)

Entropy

Source Online

Health

Tests

DRNG

BIST

DRNG wrapper interface (embedding specific)

16

Performance

Direct access to random numbers through RdRand bypasses OS,
driver, and associated overhead

Application (today)

Crypto API

OS

Driver

HW Entropy Gathering

Application (RdRand)

Crypto API RdRand

RdRand

On-chip entropy source - no off-chip
bus or I/O delays

Latency comparable to software PRNGs

Highly scalable

17

Measured
Throughput
Preliminary data from pre-
production Ivy Bridge sample1

Up to 70 million RdRand
invocations per second

500+ Million Bytes of random
data per second

Throughput ceiling is insensitive
to number of contending
parallel threads

Steady state maintained at peak
performance

 1Data taken from Intel® processor codename Ivy Bridge early engineering sample board.

Quad core, 4 GB memory, hyper-threading enabled. Software: LINUX* Fedora 14, gcc

version 4.6.0 (experimental) with RdRand support, test uses pthreads kernel API.

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Number of Parallel Threads

Number of Parallel Threads

R
d
R

a
n
d

s
 (

M
ill

io
n
s
/s

e
c
)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

Throughput (MB/s)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Throughput (RdRands/s)

18

Response Time and Reseeding Frequency
Preliminary data from pre-production Ivy Bridge sample1

RdRand Response Time
~150 clocks per invocation

(Note: Varies with CPU clock frequency since
constraint is shared data path from DRNG to
cores.)

Little contention until 8 threads

• (or 4 threads on 2 core chip)

Simple linear increase as additional threads
are added

DRNG Reseed Frequency
Single thread worst case: Reseeds every 4

RdRand invocations

Multiple thread worst case: Reseeds every
23 RdRand invocations

At slower invocation rate, can expect
reseed before every 2 RdRand calls

 NIST SP 800-90 recommends ≤ 248

1Data taken from Intel® processor codename Ivy Bridge early engineering sample board. Quad

core, 4 GB memory, hyper-threading enabled. Software: LINUX* Fedora 14, gcc version 4.6.0

(experimental) with RdRand support, test uses pthreads kernel API.

Number of Parallel Threads

Number of Parallel Threads

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

RdRand Response Time

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

DRNG Reseed Frequency

R
e
s
p
o
n

s
e

 T
im

e
 (

C
lo

c
k
 c

y
c
le

s
)

D
R

N
G

 1
2
8

-b
it
 O

u
tp

u
ts

19

DRNG Performance Learnings

Initial processor-based embeddings used a “shared” DRNG module
located in the processor uncore connected to the processor cores
through a “shared” interconnect

The “shared” interconnects employed (i.e., Message Channel and IOSF)
resulted in huge latency penalties (e.g. 2-400 uncore clocks) per
reference even on unloaded configurations executing back-to-back
RdRands

Ivy Bridge has implemented “a one off alternative” interconnect in order
to cut this latency down to ~100 uncore clocks

This points to migrating the DRNG closer to is main/latency sensitive
consumers:

• Closer to the processors on a wider/faster “shared” bus or

• Into the processor as the DRNG becomes ever smaller by:
– Process related shrinkage and/or

– A slower (but smaller) DRNG design that would deliver faster overall results
by avoiding interconnect latency

DRNG Performance Learnings

We have to decide:

• What is “reasonable RdRand/RdSeed performance” and

• How can we place a platform’s DRNG(s) as to guarantee necessary
and predictable performance.

Note that the basic DRNG itself can produce an 8 byte (64 bit) output
every 8 clocks in whatever environment you embed it => lower
bound on RdRand latency is 8 clocks.

The one accepted “selling justification” is our long stated goal of
making RdRand ~as fast as alternative and comparable
functionality SW PRNGs => then we can motivate SW PRNG
users/developers to replace cryptographic SW PRNGs with RdRand
use.

Thus, we are creating a “functionally equivalent” SW PRNG to run,
under load, for comparison (e.g., a NIST SP800-90A AES-CTR
DRBG SW PRNG using AES-NI) (e.g., OpenSSL)

We intend to have such “processor clocks per SW PRNG invocation”
numbers shortly.

20

Summary

We described the “platform entropy problem” and showed how we are
in the process of making this long standing security problem “just
go away” - Randomness anywhere anytime!

We are succeeding in getting RdRand/DRNG deployed across ALL
Intel HW products!

Collaborate with us on getting the resultant high quality/high
performance entropy widely used, wherever needed, in your SW
products

Acknowledgements

The original RdRand/DRNG architecture team - Ernie Brickell, James
Coke, George Cox, Charles Dike, Martin Dixon, Steve Fischer, Ed
Gamsaragan, Shay Gueron, Howard Herbert, DJ Johnston, Greg
Piper, Guna Thuraisingham, Jesse Walker

The DRNG design/implementation team - George Cox, Charles Dike,
and DJ Johnston

The integration teams across 30 product embeddings

The product enabling teams working with OSVs/ISVs

22

