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Session Introduction 

Much of computer security is based upon the use of cryptography. 

Cryptography is based upon two things: 

• Good algorithms (e.g., AES) and 

• Good keys (e.g., good random numbers). 

Historically, computing platforms broadly have not had high quality/high 
performance entropy (or random numbers). 

By enabling ALL future Intel platforms with our RdRand instruction (supported 
by our underlying Digital Random Number Generator (DRNG)), we: 

Provide a fundamental solution to the long standing “Platform Entropy Problem” 
and 

Give Intel’s customers the “common brand promise” of high quality/high 
performance entropy (or random numbers) everywhere across ALL Intel 
products in which it is embedded. 

=> the “Platform Entropy Problem” just “goes away” on future Intel-based 
platforms. 



Agenda 

The Platform’s Need For Entropy 

The Platform Entropy Problem 

Examples of RNG-based Security Attacks 

Serendipity Happens 

Our Solution 

SW Interface – The RdRand Instruction 

The DRNG 

RdRand/DRNG Deployment 

Processor Embedding Example 

Performance 

Measured Throughput 

Response Time and Reseeding Frequency 

Summary 

 

 

 



The Platform’s Need For Entropy 

Entropy is valuable in a variety of uses, the first of which that comes 
to mind being for “keying material” in cryptography. 

Cryptography is a basic building block for modern computer security 
and is based upon the use of comparably high quality algorithms 
and keys. 

Either being “weak” has resulted in successful attacks on cryptographic 
systems. 

Over time, cryptographic algorithms and their implementations have 
continually been improved, as needed (e.g., our AES NI). 

Comparably, the availability, quality, and performance of entropy 
sources have not. 

 



The Platform Entropy Problem 

Historically, computing platforms have had a perennial problem of the 
absence of any high quality/high performance “entropy source”.  

Older approaches were almost all based upon the premise that true 
“raw” entropy accumulation was a very slow process. 

Entropy was slowly gathered in small quantities from sources of true 
entropy (some HW source) at slow rates - in the bits/sec (e.g., key 
strokes, mouse click timing, disk seek times) up to kilobits/sec 
(analog ring oscillator-based TRNGs)  

As a scarce resource, entropy had to be accumulated (in an entropy 
pool) and used to seed/reseed a SW PRNG that could 
cryptographically spread that scarce entropy resource out over 
numerous requests with acceptable performance. 

With little availability of quality entropy early in boot, OSes can have 
difficulty generating good boot time keys. 
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The Platform Entropy Problem 

OS mediated access to HW entropy sources reduces application or 
networking performance further.  

Many of these SW PRNGs did not met quality standards such as NIST 
SP 800-90 or were not FIPS 140-2 certified as such. 

Such SW PRNGs also have a history of being error prone and easily 
monitorable/attackable. 

As servers become headless (e.g., with no keyboard or mouse) and 
move to SSDs (instead of disks), platform sources of entropy are 
going away. 

As one moves to virtualized environments, the virtualized OS that 
thinks it can get at the platform’s HW entropy probably can’t and 
will suffer further performance loss caused by hypervisor mediation. 
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Examples of RNG-based Security Attacks 

Jan 1996 - Mozilla SSL Browser RNG Failure 

28th September 1999 - How We Learned to 
Cheat at Online Poker: A Study in Software 
Security 

• by Brad Arkin, Frank Hill, Scott Marks, Matt Schmid and Thomas 
John Walls 

August 2007 – NSA’s Dual EC DRBG shown to 
have backdoor parameters 

19th November 2007 – Microsoft Windows 
Insecure Random Number Generator 

• CVE-2007-6043 

13th May 2008 - Debian/OpenSSL Fiasco 

4th November 2008 - MiFare Classic 

29th March 2010 - Weak RNG in PHP session ID 
generation leads to session hijacking  

December 2010 Sony Playstation 3 Jailbreak 

 

Debian/OpenSSL Fiasco 
 

Debian has warned of a vulnerability in its 
cryptographic functions that could leave 

systems open to attack. 

The use of a cryptographically flawed pseudo 
random number generator in Debian's 
implementation of OpenSSL meant that 

potentially predictable keys were generated… 

 

The Register – May 13th, 2008 

MiFare Classic Crypto-1 
 

Stream cipher used in about 200 million RFID 
chips worldwide. 16-bit random numbers 

generated by LFSR-based RNG. Internal state 
can be unshifted, filter function can be inverted, 

limited size enables replay attacks. 

 

BlackHat 2008 

RNG-based Attacks Have Happened 
More Often Than You Think 



Serendipity Happens 

The need for high quality entropy had been established/recognized, 
but no acceptable solution was available – NO embedding of analog 
TRNG in Intel processors 

Then came a small, but crucial, invention  

• Charles Dike and his digital Entropy Source (or TRNG) 

• Which delivers “raw” entropy @ 2-3 gigabits/sec 

Given that opportunity, we jumped in to add the necessary 
downstream and wrapper functionality to support instruction level 
use 
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Our Solution 

Quite simply, we are in the process of making this long standing security 
problem “just go away” by deploying a solution (code named Bull 
Mountain) consisting of two parts: 

• A RdRand instruction making entropy directly available to ALL SW on 
Intel platforms in any operating state/mode and 

• A HW Digital Random Number Generator (DRNG) producing NIST SP 
800-90 compliant and FIPS 140-2 certifiable entropy that supplies 
random numbers to the RdRand instruction. 

 

New Common Brand Promise of Great Entropy on ALL Intel platforms! 



SW Interface – The RdRand Instruction 

Access to the DRNG is provided to SW through the new RdRand instruction 

• Intel Advanced Vector Extensions Programming Reference, Chapter 8 
(http://software.intel.com/en-us/avx/)) – pages 8-15 and 8-11;  

The RdRand Software Implementation Guide (SIG) (http://software.intel.com/en-
us/articles/download-the-latest-bull-mountain-software-implementation-
guide/); and 

RdRand retrieves a hardware generated random value from the DRNG and stores 
it in the destination register given as an argument to the instruction.  

RdRand is available to any system or application software running on the platform. 
That is, there are no hardware ring requirements that restrict access based on 
process privilege level. As such, RdRand may be invoked as part of an 
operating system or hypervisor system library, a shared software library, or 
directly by an application. 
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The DRNG 

A reusable IP module that provides each embedding with an autonomous/self contained, high quality/high 
performance, “complete” DRNG 

Provides “common brand promise” of high quality, high performance entropy across ALL Intel products 

Composed of 

– An all-digital Entropy Source (NRBG), runtime entropy quality measurement via Online Health Test (OHT), 

– Conditioning (via AES CBC-MAC mode) and DRBGing (via AES CTR mode) post processing and 

– Built In Self Test (BIST) and Test Port 

“Standards” compliant (NIST SP 800-90) and FIPS 140-2/3 Level 2 certifiable as such and 

Designed for ease of testability, debug, and validation in HVM and in end user platforms 

– Comprehensive Built In Self Test (BIST) and 

– Test Port (and associated tools) for full pre/post-silicon debug flexibility 

Red dotted line is the DRNG’s FIPS boundary 
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Temporal Asynchrony Between Subunits 
 

Our DRNG is logically a three stage/subunit asynchronous production pipeline 
(composed of the Entropy Source, Online Health Test, and Conditioner and DRBG) 

For “flow control” purposes, these subunits each have what amounts to an “output 
queue” between them and their nearest neighbor in the DRNG production sequence 

Depending on the subunit production rate and the next subunit consumption rate, 
unpredictable dynamic synchronization behaviors ensue 
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RdRand/DRNG Deployment 

RdRand/DRNG incorporation into Ivy Bridge processors and subsequent 
reuse across ALL of Intel’s: 

• Large core client (and server) processors 

• Small core client (and server) processors (and associated SOCs);  

• Client (and server) chipsets; 

• Integrated graphics; and 

• Throughput computing  

summing to 31 product embeddings by EOY’2012  

guarantees that we meet our “common brand promise” of consistently 
delivering high quality/high performance entropy, where needed, 
across ALL Intel products/platforms. 

Ivy Bridge (large core client) is the first Intel product deployment of 
RdRand/DRNG. 



Processor Embedding Example 

Test Port 

Provides each processor 
package with a chipset 
independent, autonomous/self 
contained, high quality/high 
performance, “complete”, 
shared, uncore resident DRNG 

DRNG access by software via 
RdRand instruction 

In any given embedding, the 
DRNG is shared by multiple 
users (e.g., 

• Processor ucode (across 
multiple threads/cores) to 
implement RdRand; 

• PCU; 

• GEN/PAVP; and/or 

• Programmable elements in 
SOCs) 

Processor Package 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

                                  

Core0 

 

 

 
 

 External 

Instruction 

uCode  

RdRand 

Instruction  

Internal 

Function 

uCode  

RNG uCode Module 

Core1 

 

 

 
 

 External 

Instruction 

uCode  

RdRand 

Instruction  

Internal 

Function 

uCode  

RNG uCode Module 

Combined Conditioner and 

Deterministic Random Bit 

Generator (DRBG) 

Entropy 

Source Online 

Health 

Tests 

DRNG  

BIST 

DRNG wrapper interface (embedding specific) 



16 

Performance 

Direct access to random numbers through RdRand bypasses OS, 
driver, and associated overhead 

Application (today) 

Crypto API 

OS 

Driver 

HW Entropy Gathering 

Application (RdRand) 

Crypto API RdRand 

RdRand 

On-chip entropy source - no off-chip 
bus or I/O delays 

Latency comparable to software PRNGs 

Highly scalable 
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Measured 
Throughput 
Preliminary data from pre-
production Ivy Bridge sample1 

 

Up to 70 million RdRand 
invocations per second 

500+ Million Bytes of random 
data per second 

Throughput ceiling is insensitive 
to number of contending 
parallel threads 

Steady state maintained at peak 
performance 

 

 1Data taken from Intel® processor codename Ivy Bridge early engineering sample board.  

Quad core,  4 GB memory, hyper-threading enabled.  Software:  LINUX* Fedora 14, gcc 

version 4.6.0 (experimental) with RdRand support, test uses pthreads kernel API. 
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Response Time and Reseeding Frequency 
Preliminary data from pre-production Ivy Bridge sample1 

RdRand Response Time 
~150 clocks per invocation  

(Note: Varies with CPU clock frequency since 
constraint is shared data path from DRNG to 
cores.) 

Little contention until 8 threads 

• (or 4 threads on 2 core chip) 

Simple linear increase as additional threads 
are added 

DRNG Reseed Frequency 
Single thread worst case: Reseeds every 4 

RdRand invocations 

Multiple thread worst case: Reseeds every 
23 RdRand invocations 

At slower invocation rate, can expect 
reseed before every 2 RdRand calls 

 NIST SP 800-90 recommends ≤ 248 

 

 

 

 

 

1Data taken from Intel® processor codename Ivy Bridge early engineering sample board.  Quad 

core,  4 GB memory, hyper-threading enabled.  Software:  LINUX* Fedora 14, gcc version 4.6.0 

(experimental) with RdRand support, test uses pthreads kernel API. 
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DRNG Performance Learnings 

Initial processor-based embeddings used a “shared” DRNG module 
located in the processor uncore connected to the processor cores 
through a “shared” interconnect 

The “shared” interconnects employed (i.e., Message Channel and IOSF) 
resulted in huge latency penalties (e.g. 2-400 uncore clocks) per 
reference even on unloaded configurations executing back-to-back 
RdRands 

Ivy Bridge has implemented “a one off alternative” interconnect in order 
to cut this latency down to ~100 uncore clocks 

This points to migrating the DRNG closer to is main/latency sensitive 
consumers: 

• Closer to the processors on a wider/faster “shared” bus or 

• Into the processor as the DRNG becomes ever smaller by: 
– Process related shrinkage and/or 

– A slower (but smaller) DRNG design that would deliver faster overall results 
by avoiding interconnect latency 



DRNG Performance Learnings 

We have to decide: 

• What is “reasonable RdRand/RdSeed performance” and 

• How can we place a platform’s DRNG(s) as to guarantee necessary 
and predictable performance. 

Note that the basic DRNG itself can produce an 8 byte (64 bit) output 
every 8 clocks in whatever environment you embed it => lower 
bound on RdRand latency is 8 clocks.   

The one accepted “selling justification” is our long stated goal of 
making RdRand ~as fast as alternative and comparable 
functionality SW PRNGs => then we can motivate SW PRNG 
users/developers to replace cryptographic SW PRNGs with RdRand 
use.  

Thus, we are creating a “functionally equivalent” SW PRNG to run, 
under load, for comparison (e.g., a NIST SP800-90A AES-CTR 
DRBG SW PRNG using AES-NI) (e.g., OpenSSL)   

We intend to have such “processor clocks per SW PRNG invocation” 
numbers shortly. 
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Summary 

We described the “platform entropy problem” and showed how we are 
in the process of making this long standing security problem “just 
go away” - Randomness anywhere anytime! 

We are succeeding in getting RdRand/DRNG deployed across ALL 
Intel HW products! 

Collaborate with us on getting the resultant high quality/high 
performance entropy widely used, wherever needed, in your SW 
products 



Acknowledgements  

The original RdRand/DRNG architecture team - Ernie Brickell, James 
Coke, George Cox, Charles Dike, Martin Dixon, Steve Fischer, Ed 
Gamsaragan, Shay Gueron, Howard Herbert, DJ Johnston, Greg 
Piper, Guna Thuraisingham, Jesse Walker 

The DRNG design/implementation team - George Cox, Charles Dike, 
and DJ Johnston 

The integration teams across 30 product embeddings 

The product enabling teams working with OSVs/ISVs 

 

22 


